A branch and cut algorithm for minimum spanning trees under conflict constraints
نویسندگان
چکیده
We study approaches for the exact solution of the NP–hard minimum spanning tree problem under conflict constraints. Given a graph G(V,E) and a set C ⊂ E ×E of conflicting edge pairs, the problem consists of finding a conflict-free minimum spanning tree, i.e. feasible solutions are allowed to include at most one of the edges from each pair in C. The problem was introduced recently in the literature, with several results on its complexity and approximability. Some formulations and both exact and heuristic algorithms were also discussed, but computational results indicate considerably large duality gaps and a lack of optimality certificates for benchmark instances. In this paper, we build on the representation of conflict constraints using an auxiliary conflict graph Ĝ(E,C), where stable sets correspond to conflict-free subsets of E. We introduce a general preprocessing method and a branch and cut algorithm using an IP formulation with exponentially sized classes of valid inequalities for both the spanning tree and the stable set polytopes. Encouraging computational results indicate that the dual bounds of our approach are significantly stronger than those previously available, already in the initial LP relaxation, and we are able to provide new feasibility and optimality certificates.
منابع مشابه
Optimal Self-healing of Smart Distribution Grids Based on Spanning Trees to Improve System Reliability
In this paper, a self-healing approach for smart distribution network is presented based on Graph theory and cut sets. In the proposed Graph theory based approach, the upstream grid and all the existing microgrids are modeled as a common node after fault occurrence. Thereafter, the maneuvering lines which are in the cut sets are selected as the recovery path for alternatives networks by making ...
متن کاملAn Algorithm to Generate All Spanning Trees of a Graph in Order of Increasing Cost
A minimum spanning tree of an undirected graph can be easily obtained using classical algorithms by Prim or Kruskal. A number of algorithms have been proposed to enumerate all spanning trees of an undirected graph. Good time and space complexities are the major concerns of these algorithms. Most algorithms generate spanning trees using some fundamental cut or circuit. In the generation process,...
متن کاملLayered graph models and exact algorithms for the generalized hop-constrained minimum spanning tree problem
This article studies the generalized hop-constrained minimum spanning tree problem (GHMSTP) which has applications in backbone network design subject to quality-of-service constraints that restrict the maximum number of intermediate routers along each communication path. Different possibilities to model the GHMSTP as an integer linear program and strengthening valid inequalities are studied. Th...
متن کاملMinimal Spanning Trees with Conflict Graphs
For the classical minimum spanning tree problem we introduce disjunctive constraints for pairs of edges which can not be both included in the spanning tree at the same time. These constraints are represented by a conflict graph whose vertices correspond to the edges of the original graph. Edges in the conflict graph connect conflicting edges of the original graph. It is shown that the problem b...
متن کاملA Hybrid Relax-and-Cut/Branch and Cut Algorithm for the Degree-Constrained Minimum Spanning Tree Problem
A new exact solution algorithm is proposed for the Degree-Constrained Minimum Spanning Tree Problem. The algorithm involves two combined phases. The first one contains a Lagrangian Relaxand-Cut procedure while the second implements a Branch-and-Cut algorithm. Both phases rely on a standard formulation for the problem, reinforced with Blossom Inequalities. An important feature of the proposed al...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Optimization Letters
دوره 9 شماره
صفحات -
تاریخ انتشار 2015